
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Clustering Based Prioritization of Test Suites in Software Testing

 Arvind Kumar upadhyay
1

and Dr. A. K. Misra
2

1. Deptt. of Computer Sc. and Engg. EIT Faridabad (HR)-India

E.mail:aupadhayay1@gmail.com

2. Deptt. of Computer Sc. and Engg, MNNIT Allahabad (UP)-India

Abstract

Software Testing challenges the development process at all

stages of software development and it is no surprise that a bulk

of development cost is spent on testing. Testing is fundamental to

software quality and is ultimate review of specification, design

and coding. Human fallibilities are enormous and errors may

begin to occur at the very inception of ideas. The focus of Test

case design is on a set of techniques that meet overall testing

objectives. New test cases are a necessity in this ever evolving

scenario of software development. Many a times the size of a test

suite may become so large that it becomes necessary to apply

some control mechanism on these numbers of test cases.

Prioritization is a technique that can facilitate increased chances

of early fault detection and is helpful in reducing test suite size.

In our attempt we adopt a new technique CBP (clustering based

prioritization) to effectively control test suite size.

I. Introduction

Due to the ever changing target requirements, the test suites

continue to grow and there may be circumstances when obsolete

and redundant test cases entail necessary attention. It is always

advantageous to have a small set of test cases to avoid

repeated execution of tests cases. Through minimizations,

redundant and obsolete tests cases could be eliminated [1].

Software cost is size dependant. Test suite minimization

technique can lower cost by reducing a test suite to a minimal

subset. By reducing test suite, maintenance cost is significantly

minimized. Prioritization is fundamental to test suite

minimization process [7]. The rationale behind prioritization is to

reduce test cases based on some non arbitrary criteria and always

aiming to select the most appropriate tests. For instance

following priority categories may be determined for the test

cases:

Priority 1. The test cases must be executed before the final

product is released to remove the critical bugs.

Priority 2. If time permits, the test cases may be executed.

Priority 3. The test cases are not important prior to the current

release. It may be tested shortly after the release of the current

software version.

Priority 4. The test case is never important, as its impact is nearly

negligible.

Such a priority scheme ensures that low priority test cases do not

create problems for software[9]. At times customers demand that

some important features of software be tested and presented in

the first version of software itself. There important features

become criteria. Priority can be advertisement based because the

company might have promised about essential features to

customers[5]. Fault detection rate of a test suite reveals about the

likelihood of faults earlier. Coverage criteria should be met

earlier in test process.

2. Test case prioritization

The purpose of Test case prioritization lies in ordering test cases

based on a particular technique [21]. It takes into account that if

such a scheme is followed then it is more likely to meet the

objective than it would otherwise. Test case prioritization can

address a wide variety of objectives as:

 1. To increase the rate of fault detection so that faults may be

revealed earlier in regression test.

2. To focus on high-risk faults and detect them earlier in testing

process.

3. To speed up the regression errors connected to code changes

as early as possible.

4. To cover code coverage in the system under test at a faster

rate.

5. To enhance reliability confidence in the system under test at a

faster rate.

3. Clustering based prioritization

3.1 Motivation

The total number of comparisons required for pair-wise

comparison is O(n2) comparisons[20]. Redundancy makes pair-

wise comparison very robust but the high cost incurred
discourages it from being applied to test case prioritization. The

maximum number of comparisons a human can make

consistently is approximately 100 [1]; above this threshold,

inconsistency grows significantly, leading to reduced

effectiveness. But to require less than 100 pair-wise comparisons,

the test suite could contain no more than 14 test cases. In real

world scenario the issue of scalability is challenging. For

example, suppose there are 1,000 test cases to prioritize; the total

number of required pair-wise comparisons would be 499,500.

Obviously it is unrealistic to expect a human tester to provide

reliable responses for such a large number of comparisons [8].
Our approach using K-means cluster based prioritization reduces

the number of comparisons and can be very effective. Instead of

prioritizing individual test cases, clusters of test cases are

prioritized using techniques such as CBP.

3.2 K-means clustering criteria

Broadly speaking, there are two methods of clustering i.e. data

can be arranged as a group of individuals or as a hierarchy of

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

groups. It can thereafter be established that whether the data

group belong to some preconceived ideas or suggest new

ones[4]. Cluster analysis groups data objects into clusters such

that objects belonging to the same cluster are similar, while those

belonging to different ones are dissimilar. Clustering techniques

could be categorized into modes Partitional or Hierarchical:

Partitional: Given a database of objects, a partitional clustering

algorithm constructs partitions of the data, where each cluster

optimizes a clustering criterion, such as the minimization of the

sum of squared distance from the mean within each cluster[6].

The complexity of Partitional clustering is large because it

enumerates all possible groupings and tries to find the global

optimum. Even for a small number of objects, the number of

partitions is huge. That’s why; common solutions start with an

initial, usually random, partition and proceed with its refinement.

A better practice would be to run the partitional algorithm for
different sets of initial points (considered as representatives) and

investigate whether all solutions lead to the same final

partition[13]. Partitional Clustering algorithms try to locally

improve a certain criterion. First, they compute the values of the

similarity or distance, they order the results, and pick the one that

optimizes the criterion[11]. Hence, the majority of them could be

considered as greedy-like algorithms.

Hierarchical: Hierarchical algorithms create a hierarchical

decomposition of the objects. They are either

agglomerative (bottom-up) or divisive (top-down):

(a) Agglomerative algorithms start with each object being a

separate cluster itself, and successively merge groups according
to a distance measure[14]. The clustering may stop when all

objects are in a single group or at any other point the user wants.

These methods generally follow a greedy-like bottom-up

merging.

(b) Divisive algorithms follow the opposite strategy[12]. They

start with one group of all objects and successively split groups

into smaller ones, until each object falls in one cluster, or as

desired[10]. Divisive approaches divide the data objects in

disjoint groups at every step, and follow the same pattern until all
objects fall into a separate cluster. This is similar to the approach

followed by divide-and-conquer algorithms.

K-means clustering method:

K-means clustering methods produce clusters from a set of
objects based upon the squared-error objective functions:

being minimized[2,3]. In the above expression, ci are the clusters,

p is a point in a cluster ci and mi the mean of cluster ci. The mean

of a cluster is given by a vector, which contains, for each

attribute, the mean values of the

data objects in this cluster, input parameter is the number of

clusters, k[22]. As an output the algorithm returns the centers, or

means, of every cluster ci, most of the times excluding the cluster

identities of individual points. The distance measure usually

employed is the Euclidean distance. Both for the optimization

criterion and the proximity index, there are no restrictions, and

they can be specified according to the application or the user’s

preference. The algorithm is as follows:

1. Select k objects as initial centers;

2. Assign each data object to the closest center;

3. Recalculate the centers of each cluster;

4. Repeat steps 2 and 3 until distribution of data

 objects in clusters do not change;

The algorithm is relatively scalable.

4. The Experiment

4.1. Research Questions

We are interested in the following research question.

Q: How can K-means clustering technique facilitate test case

prioritization of test suites?

4.2. Efficacy and CBP Measures

In his classic book, Glenford Myers proposes the following

testing problem: Develop a good set of test cases for a program

that accepts three numbers, a, b, and c, interprets those numbers

as the lengths of the sides of a triangle, and outputs the type of

the triangle[18,19]. For this classic triangle problem, we can
divide the domain space into three sub domains, one for each

different type of triangle that we will consider: scalene (no sides

equal), isosceles (two sides equal), and equilateral (all sides

equal). We can also identify two error situations: a sub domain

with bad inputs and a sub domain where the sides of those

lengths would not form a triangle. Additionally, since the order

of the sides is not specified, all combinations should be tried.

Finally, each test case needs to specify the value of the output. In

the following example, we show some typical values and

conditions to decide triangle formation [23].

Sub domain Example 1: Test Cases for Triangle formation

Scalene:

Increasing size (3, 4, 5—scalene)

Decreasing size (5, 4, 3—scalene)
Largest as second (4, 5, 3—scalene)

Isosceles:

a=b & other side larger (5, 5, 8—isosceles)

a=c & other side larger (5, 8, 5—isosceles)

b=c & other side larger (8, 5, 5—isosceles)

a=b & other side smaller (8, 8, 5—isosceles)

a=c & other side smaller (8, 5, 8—isosceles)

b=c & other side smaller (5, 8, 8—isosceles)

Equilateral:

All sides equal (5, 5, and 5— equilateral)

Not a triangle:
Largest first (6, 4, 2—not a triangle)

Largest second (4, 6, 2—not a triangle)

Largest third (1, 2, 3—not a triangle)

Bad inputs:

One bad input (-1, 2, 4—bad inputs)

Two bad inputs (3,-2,-5—bad inputs)

Three bad inputs (0, 0, 0 – bad inputs)

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

This list of sub domains could be increased to distinguish other
sub domains that might be considered significant. For example,

in scalene sub domains, there are actually six different orderings,

but the placement of the largest might be the most significant

based on possible mistakes in programming.

STRUCTURAL TESTING

Structural testing is based on the structure of the source code.

The simplest structural testing criterion is every statement

coverage, often called C0 coverage[15,17]. This criterion is that

every statement of the source code should be executed by some

test case at least once. The normal approach to achieving C0

coverage is to select test cases until a coverage tool indicates that
all statements in the code have been executed. In the following

pseudo code implementation of the triangle problem, the matrix

shows which lines are executed by which test cases. Note that the

first three statements (A, B, and C) can be considered parts of the

same node.

 Table 1

Control flow graph consists of nodes and edges. For our example

of triangle formation problem, the control flow graph can be
drawn as below:

fig1: Control flow graph for example 1.

If we model the program of Example 1, as a control flow graph,

then coverage criterion requires covering every arc in the control

flow diagram[16]. A path is a unique sequence of program nodes
that are executed by a test case. In the testing matrix (Table1)

above, there were eight sub domains. Each of these just happens

to be a path. The following table 2 shows the eight feasible paths

in the triangle pseudo code of Example 1.

 Table2

5. Result & Analysis:

We now apply the k-means clustering method for triangle

problem. For this we make use of table 2. In table 2 there are

eight paths in every path testing criteria. Initially we took three

clusters as k-value and by using the algorithm we finally

calculate that three clusters have following combination:

C1: path1

C2: path2, path3, path4, path5, path7

C3: path6, path8

In our prioritization, we priorities the clusters having maximum

numbers of paths in descending order to execute test cases. So

for our example path2, path3, path4, path5, path7 would be

executed first as this has got highest priority. In the second step

path6, path8 would be tested. In the third step path1 would be

executed. Now it can be seen that cluster 2 is most important,

cost effective yet complete.

In the following figure, we have shown dendrogram to show the

prioritization of test cases.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 2: Dendrogram of test cases

Out of all test cases through 1 to 8, the dendrograph shows that

the priority of test cases are 5,7,3,6,2,4,8,1. It also shows that test

cases 5 and 7 are highest priority combination and the

combination of two along with 3 is a must in terms of testing.

There after the 2 and 4 combination is equally important

combination as far testing is concerned.

6. Conclusion & Future Work

In our paper we make use of clustering technique as prioritization

measure to priorities the test cases. Our approach can categories

the test cases in decreasing order of importance of test cases and

thus save vital time and cost of software development. In future,

however we would like to take it forward and use various data

mining techniques to find association among test suites and cost

and space occupied and thus predict the most suitable test cases

vs. the requirements. In a way we can successfully link software

development with user requirements.

7. References:

[1] Gregg Rothermel ,Roland H.Untch,Mary Jean

 Harrold,‖Prioritizing Test Cases For Regression

 Testing,‖ IEEE Transaction on Software

 Engineering, Vol.27, No.10 October 2001.

[2] G. J. Myers. The Art of Software Testing. Revised and

 Updated by Tom Badgett and Todd M.Thomas with

 Corey Sandler, John Wiley & Sons, Inc, Second

 Edition. 2004, pp. 1-255.
[3] Boris Beizer. Software System Testing and Quality

 Assurance. Van Nostrand, New York, 1984.

[4] Boris Beizer. Software Testing Techniques. Van

 Nostrand Reinhold, Inc, New York NY, 2nd edition, 1990.

ISBN 0-442-20672-0.

[5] Richard A. DeMillo, W. Michael McCracken, Rhonda

 J. Martin, and John F. Passafiume.Software Testing

 and Evaluation.Benjamin/Cummings, Menlo Park CA,

 1987.
 [6] Siripong Roongruangsuwan, Jirapun Daengdej,‖Test

 Case prioritization techniques,‖ Journal of theoretical

 and applied informational technology,2005

 [7] Mao ye, boqinFeng, yao Lin 7Li Zhu. ―Neural

 Networks Based Test Case Selection‖ Proc of

 IEEEtransactions,2006.

 [8] T.Y. Chen, Pak-lok poon, t.h. Tse.‖A choice Relation

 framework for supporting Category-partition Test

 Case generation‖ IEEE transactions on software

 Engineering, vol.29, No.7, July 2003.

[9] Sebastian Elbaum, Alexey G.Malishevsky, Gregg

 Rothermel.‖Test Case Prioritization‖ IEEE

 transactions on software Engineering, vol.28, No.2,

 February 2002.
[10] Kuo –Chung Tainand Yu Lei. ―A Test generation

 strategy for Pairwisetesting‖ IEEE transactions on

 software Engineering, vol.28, No.1, January 2002.

[11] Christoph C. Michael, gary McGraw, Michael A.

 Schatz. ―Generating software test data by Evolution‖.

 IEEE transactions on software Engineering, vol.27,

 No.12, December 2001.

[12] Shino yahoo & Mark Harman ,Paolo tonella &

 Angelo susi, ―Clustering test cases to achieve

 Effective & scalable prioritisation incorporating

 Expert knowledge,‖ ISSTA 09,July 19-23, 2009,

 Chicago, USA.
[13] Gregg rothermel , roland h. untch, chengyun chu

 ,mary jean harrold, ― Test case prioritization : An

 Empirical study,‖ Proceedings of the international

 conference on software maintenance, oxford ,U.K.,

 September ,1999, IEEE

[14] Wei-Tek Tsai and Lian Yu, Feng Zhu, Ray Paul.

 ―Rapid embedded system testing using verification

 patterns‖ . IEEE software 2005.

[15] S. G. Elbaum, A. G. Malishevsky, and G.

 Rothermel. Prioritizing test cases for regression

 testing. In International Symposium on Software
 Testing and Analysis, pages 102–112. ACM Press,

 2000.

[16] Martina marre and Antonia Bertolino, ―using

 spanning sets for coverage testing‖. IEEE transactions

 on software Engineering, vol.29, No.11, November

 2003.
 [17] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
 controlled experimentation with testing techniques: an
 infrastructure and its potential impact. Empirical Software
 Engineering, 10 (4): 405–435, 2005.
[18] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit

 Test cases: an empirical assessment and cost-benefits
 analysis.Empirical Software Engineering, 11: 33–70, 2006.
[19] P. M. Duvall, S. Matyas, and A. Glover. Continuous
 Integration: Improving Software Quality and Reducing
 Risk. Addison Wesley, Upper Saddle River, NJ, 2007.
[20] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
 Prioritizing test cases for regression testing. ACM
 SIGSOFT Software Engineering Notes, 25 (5): 102–112,

 2000.
[21] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 case prioritization: a family of empirical studies. IEEE
 Transactions on Software Engineering, 28 (2): 159–182,
 2002.
[22] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G.
 Malishevsky. Selecting a cost-effective test case
 Prioritization technique. Software Quality Control, 12 (3):
 185–210, 2004.
[23] David Gustafson,‖Theory and Problem of Software

 Egineering,‖ Computing and Information science

 Department Kansas state University

.

